Argumentação e Prova em Matemática: uma análise dos itens públicos do PISA 2012
Conteúdo do artigo principal
Resumo
Neste artigo, o objetivo é analisar os itens públicos do Programa Internacional de Avaliação dos Estudantes (PISA, em inglês) de 2012 que versem sobre argumentação e prova em Matemática. Estes itens exploram os três processos matemáticos (formular, empregar e interpretar), fundamentais para o desenvolvimento da capacidade de raciocinar e argumentar, e definem o letramento matemático segundo a matriz de referência do PISA. Na abordagem teórico-metodológica, recorremos a trabalhos referenciados na literatura que discutem as funções da prova, bem como apresentam outros trabalhos exploratórios envolvendo estudantes e professores. O estudo se caracteriza por uma pesquisa documental, de cunho qualitativo. No levantamento realizado na base de questões públicas disponível no site do Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP), selecionamos 10 itens que atendiam a critérios previamente estabelecidos e procedemos à análise de três destes itens, um de cada processo matemático, à luz dos referenciais que discutem os papéis da prova. Os resultados mostram que os itens buscam mobilizar no estudante habilidades que tencionam o desenvolvimento do raciocínio lógico, conforme estabelecido na BNCC. A título de conclusões parciais, consideramos que a abordagem dessas questões em avaliações de largo alcance, bem como em avaliações institucionais (realizadas pela própria escola), estimula o trabalho pedagógico voltado à construção das habilidades de argumentar e demonstrar, que serão úteis tanto para o desenvolvimento em Matemática como também para sua atuação em um contexto social mais ampliado.
Downloads
Detalhes do artigo
Uma nova publicação de artigo anteriormente publicado na Revista Baiana de Educação Matemática, fica sujeita à expressa menção da precedência de sua publicação neste periódico, seguindo as normas de referência. Autores que publicam na RBEM concordam com os seguintes termos:
-
O Conselho Editorial se reserva ao direito de efetuar, nos originais, alterações de ordem normativa, sintática, ortográfica e bibliográfica com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores. As provas finais poderão ou não ser enviadas aos autores.
-
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution (CC BY-NC-SA).
-
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista, exemplo: publicar em repositório institucional ou como capítulo de livro, com reconhecimento de autoria e publicação inicial na RBEM.
-
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online — em repositórios institucionais, página pessoal, rede social ou demais sites de divulgação científica.
Referências
AGUILAR JÚNIOR, C. A.; NASSER, L. Analisando justificativas e argumentação matemática de alunos do ensino fundamental. VIDYA, Santa Maria/RS, v. 32, n. 2, p.133-147, 2012. Disponível em: https://periodicos.ufn.edu.br/index.php/VIDYA/article/view/278/254. Acesso em: 13 dez. 2020.
ALMOULOUD, S. A. Prova e demonstração em matemática: problemática de seus processos de ensino e aprendizagem. In: Reunião Anual da ANPEd, 30, Caxambu/MG. Anais..., 2007, p. 1-18. Disponível em: https://anped.org.br/sites/default/files/gt19-2957-int.pdf. Acesso em: 13 dez. 2020.
BALACHEFF, N. Preuve et démonstration en mathématiques au collège. Recherchesen Didactique des Mathématiques, Grenoble, v. 3, n. 3, p. 261-304, 1982.
______. Aspects of proof in pupils’ practice of school mathematics. In: PIMM, D. (Ed.), Mathematics, teachers and children. Londres: Hodder and Stoughton, 1988, p. 216-235.
BOAVIDA, A. M. R. A argumentação em matemática: investigando o trabalho de duas professoras em contexto de colaboração. 996 f. Tese (Doutorado em Educação) - Universidade de Lisboa, 2005. Disponível em: https://repositorio.ul.pt/bitstream/10451/3140/1/ulsd048032_td_Ana_Boavida.pdf. Acesso em: 13 dez. 2020.
BRASIL. Parâmetros curriculares nacionais: Matemática. Secretaria de Educação Fundamental. Brasília/DF: MEC / SEF, 1998. Disponível em: http://portal.mec.gov.br/seb/arquivos/pdf/matematica.pdf. Acesso em: 13 dez. 2020.
______. PCN + Ensino Médio: orientações educacionais complementares aos Parâmetros Curriculares Nacionais − Ciências da Natureza, Matemática e suas tecnologias. Secretaria de Educação Básica. Brasília/DF: MEC/SEB, 1999. Disponível em: http://portal.mec.gov.br/seb/arquivos/pdf/CienciasNatureza.pdf. Acesso em: 13 dez. 2020.
______. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Itens liberados − Matemática PISA 2012. Brasília/DF: 2012. Disponível em: https://download.inep.gov.br/acoes_internacionais/pisa/itens/2012/pisa_2012_matematica_itens_liberados.pdf Acesso em: 13 dez. 2020.
______. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Relatório Nacional PISA 2012: resultados brasileiros. Brasília/DF: Fundação Santillana, 2013a. Disponível em: https://download.inep.gov.br/acoes_internacionais/pisa/resultados/2014/relatorio_nacional_pisa_2012_resultados_brasileiros.pdf. Acesso em: 13 dez. 2020.
______. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Matriz de avaliação de matemática − PISA 2012. Brasília/DF: 2013b. Disponível em: https://download.inep.gov.br/acoes_internacionais/pisa/marcos_referenciais/2013/matriz_avaliacao_matematica.pdf. Acesso em: 13 dez. 2020.
______. Base Nacional Comum Curricular: educação é a base. Brasília/DF: MEC/SEB, 2018. Disponível em: http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf.
Acesso em: 13 dez. 2020.
CALDATO, J. Argumentação, prova e demonstração: uma investigação sobre as concepções de ingressantes no curso de Licenciatura em Matemática. 219 f. Dissertação (Mestrado em Ensino de Matemática) − Universidade Federal do Rio de Janeiro, 2018. Disponível em: http://www.pg.im.ufrj.br/pemat/MSc%2090_Carlos%20Caldato%20Correia.pdf. Acesso em: 13 dez. 2020.
CALDATO, J.; UTSUMI, M. C.; NASSER, L. Argumentação e demonstração em matemática: a visão de alunos e professores. Revista Triângulo, Uberaba/MG, v. 10 n. 2, p. 74-93, 2017. Disponível em: http://seer.uftm.edu.br/revistaeletronica/index.php/revistatriangulo/article/view/2583/pdf. Acessoem: 13 dez. 2020.
DE VILLIERS, M. The role and function of proof in mathematics. Pythagoras, n. 24, p. 17-24, 1990.
______. Rethinking proof with Geometer’s Sketchpad. Emeryville/CA: Key Curriculum Press, 1999.
GONSALVES, E. P. Conversas sobre iniciação à pesquisa científica. 2ª ed. Campinas: Alínea, 2001.
HANNA, G. Some Pedagogical Aspects of Proof. Interchange, v. 21, n. 1, p. 6-13, 1990.
______. Challenges to the importance of proof. For the Learning Mathematics, v. 15, n. 3, p. 42-49, nov. 1995.
HEALY, L.; HOYLES, C. Justifying and proving in school mathematics: technical report on the nationwide survey. London: Institute of Education, University of London, 1998. 120 p.
JOLANDEK, E. G. Reforma curricular, avaliação em larga escala e pisa: um olhar a partir de percepções docentes. 187 f. Dissertação (Mestrado em Ensino de Ciências e Educação Matemática) − Universidade Estadual de Ponta Grossa, 2020. Disponível em: https://tede2.uepg.br/jspui/bitstream/prefix/3093/1/Emilly%20Jolandek.pdf. Acesso em: 13 dez. 2020.
LIMA, M. L. S; SANTOS, M. C. Provas e demonstrações e níveis do pensamento geométrico: conceitos, bases epistemológicas e relações. REVEMAT, Florianópolis/SC, v. 15, n. 1, p. 01-21, 2020. Disponível em: https://periodicos.ufsc.br/index.php/revemat/article/view/1981-1322.2020.e66702/43212. Acesso em: 13 dez. 2020.
NOTARE, M. R.; BASSO, M. V. de A. Argumentação e Prova Matemática com Geometria Dinâmica. Novas Tecnologias na Educação, Porto Alegre/RS, v. 16, n. 1, p. 1-10, 2018. Disponível em: https://seer.ufrgs.br/renote/article/view/86021/49384. Acesso em: 13 dez. 2020.
NUNES, J. S. V; ALMOULOUD, S. A. O modelo de Toulmin e a análise da prática da argumentação em matemática. Educação Matemática Pesquisa, São Paulo/SP, v. 15, n.2, p. 487-512, 2013. Disponível em: https://revistas.pucsp.br/emp/article/viewFile/14592/pdf_1. Acesso em: 13 dez. 2020.
ORTIGÃO, M. I. R; SANTOS, M. J. C.; LIMA, R. L. Letramento em Matemática no PISA: o que sabem e podem fazer os estudantes? Zetetiké, Campinas/SP, v.26, n.2, p. 375-389, 2018. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/zetetike/article/view/8650093/18158. Acessoem: 13 dez. 2020.
REID, D. A.; KNIPPING, C. Proof in Mathematics Education: Research, Learning and Teaching. Rotterdam: Sense Publishers, 2010. 251 p.