Portfolios, Memes and the Teaching Internship in Undergraduate Mathematics
An experience report in the pandemic Brazil 2021
Keywords:
Pandemic, Covid-19, Undergraduate MathematicsAbstract
In this text, we aim to report an experience of accomplishment of the Teaching Internship in Higher Education in a Mathematics undergraduate course during the pandemic period, which required the need for social distancing. In this experience, the delivery of a portfolio containing the constructions carried out during the course was considered the final work and, in this text, we share the fact that undergraduate students recurrently use memes to express opinions, feelings or to emphasize some dimension of the discussions that took place during the course. Based on discussions of literature that involve Portfolios, Memes and Mathematics Education, we present reflections based on experience that go towards the use of memes by undergraduate students in Mathematics. Finally, we emphasize that the use of portfolios as an evaluative strategy during the pandemic allowed the students to make use of several forms of language, expression and communication in their work, which greatly enriches the formative possibilities undertaken in the initial formative process of mathematics teachers.
Downloads
References
BONA, A. S.; BASSO, M. V. A. Portfólio de Matemática: um instrumento de análise do processo de aprendizagem. Boletim de Educação Matemática, Rio Claro, v. 27, n. 46, p. 399-416, 2013.
BRITO, C. S.; SANT’ANA, C. C.; SANT’ANA, I. P. Memes com viés matemático e suas potencialidade para o ensino de Matemática. Revista Sergipana de Matemática e Educação Matemática, Itabaiana, n. 1, p. 173-188, 2020.
FIORENTINI, D. Alguns modos de ver e conceber o ensino da Matemática no Brasil. Zetetiké, Campinas, v. 3, n. 4, 1995.
FRISKE, A. L; ROSA, M. Memes, Matemática e formação com professores/professoras: uma perspectiva sociopolítica. Revista de Educação Matemática, São Paulo, v. 18, p.1-20, e021019, 2021.
MENDES, M. T. et. al. Portfólio de aprendizagem: um instrumento para avaliação em aulas de Cálculo Diferencial e Integral. Revista Eletrônica de Educação Matemática, Florianópolis, v. 14, n. 2, p. 01-20, 2019.
MENEGHETTI, R. C. G. Constituição do saber matemático: reflexões filosóficas e históricas. Londrina: EDUEL, 2010.
MENEGHETTI, R. C. G. O Intuitivo e o Lógico no Conhecimento Matemático: análise de uma proposta pedagógica em relação a abordagens filosóficas atuais e ao contexto educacional da matemática. Boletim de Educação Matemática, Rio Claro, ano 22, n. 32, p. 161-188, 2009.
PAULO, R. M.; SANTOS, J. C. A. P. Avaliação em matemática: uma leitura de concepções e análise do vivido na sala de aula. Ciência & Educação, Bauru, v. 17, n. 1, pp. 183-197, 2011.
POSTINGUE, T. P. Formar Para Avaliar: Racionalidade comunicativa e currículos de licenciatura em matemática. 2019. Dissertação (Mestrado em Ensino e Processos Formativos) – Universidade Estadual Paulista, Ilha Solteira, 2019.
SACHET, B.; ROSA, M. A Concepção de Gênero por Meio de Memes em uma Aula de Matemática: uma análise sob as lentes da decolonialidade. Revista Internacional de Pesquisa em Educação Matemática, Brasília, v. 11, n. 2, p. 105-124, 2021.
SILVA, K. A. P.; DALTO, D. O. Portfólio de atividades de modelagem matemática como instrumento de avaliação formativa. Educação Matemática Pesquisa, São Paulo, v. 22, n. 1, p. 371-393, 2020.
SILVA, J. J. Filosofia da Matemática e Filosofia da Educação Matemática. In: BICUDO, M. A. V. Pesquisa em Educação Matemática: concepções e perspectivas. p. 45-58. São Paulo: Editora Unesp, 1999.
SILVA, J. J. Filosofias da Matemática. São Paulo: Editora Unesp, 2007.
Downloads
Published
How to Cite
Issue
Section
License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.Você é livre para:
Compartilhar - copia e redistribui o material em qualquer meio ou formato; Adapte - remixe, transforme e construa a partir do material para qualquer propósito, mesmo comercialmente. Esta licença é aceitável para Obras Culturais Livres. O licenciante não pode revogar essas liberdades, desde que você siga os termos da licença.
Sob os seguintes termos:
Atribuição - você deve dar o crédito apropriado, fornecer um link para a licença e indicar se alguma alteração foi feita. Você pode fazer isso de qualquer maneira razoável, mas não de uma forma que sugira que você ou seu uso seja aprovado pelo licenciante.
Não há restrições adicionais - Você não pode aplicar termos legais ou medidas tecnológicas que restrinjam legalmente outros para fazer qualquer uso permitido pela licença.